HEX
Server: Apache/2.4.58 (Ubuntu)
System: Linux ns3133907 6.8.0-84-generic #84-Ubuntu SMP PREEMPT_DYNAMIC Fri Sep 5 22:36:38 UTC 2025 x86_64
User: cssnetorguk (1024)
PHP: 8.2.28
Disabled: NONE
Upload Files
File: //old_home_backup/g-step.co.uk/public_html/nra2cea0/cache/b8513d6b84d0f431c0a5d991facbf11agoogle
a:5:{s:8:"template";s:46458:"<!doctype html>
<html lang="en"><head><meta name="viewport" content="width=device-width, user-scalable=yes, initial-scale=1.0"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta charset="UTF-8"><title>{{ keyword }}</title><script defer src="data:text/javascript;base64,CndpbmRvdy5fd3BlbW9qaVNldHRpbmdzID0geyJiYXNlVXJsIjoiaHR0cHM6XC9cL3Mudy5vcmdcL2ltYWdlc1wvY29yZVwvZW1vamlcLzE0LjAuMFwvNzJ4NzJcLyIsImV4dCI6Ii5wbmciLCJzdmdVcmwiOiJodHRwczpcL1wvcy53Lm9yZ1wvaW1hZ2VzXC9jb3JlXC9lbW9qaVwvMTQuMC4wXC9zdmdcLyIsInN2Z0V4dCI6Ii5zdmciLCJzb3VyY2UiOnsiY29uY2F0ZW1vamkiOiJodHRwczpcL1wvZy1zdGVwLmNvLnVrXC93cC1pbmNsdWRlc1wvanNcL3dwLWVtb2ppLXJlbGVhc2UubWluLmpzP3Zlcj02LjMuMiJ9fTsKLyohIFRoaXMgZmlsZSBpcyBhdXRvLWdlbmVyYXRlZCAqLwohZnVuY3Rpb24oaSxuKXt2YXIgbyxzLGU7ZnVuY3Rpb24gYyhlKXt0cnl7dmFyIHQ9e3N1cHBvcnRUZXN0czplLHRpbWVzdGFtcDoobmV3IERhdGUpLnZhbHVlT2YoKX07c2Vzc2lvblN0b3JhZ2Uuc2V0SXRlbShvLEpTT04uc3RyaW5naWZ5KHQpKX1jYXRjaChlKXt9fWZ1bmN0aW9uIHAoZSx0LG4pe2UuY2xlYXJSZWN0KDAsMCxlLmNhbnZhcy53aWR0aCxlLmNhbnZhcy5oZWlnaHQpLGUuZmlsbFRleHQodCwwLDApO3ZhciB0PW5ldyBVaW50MzJBcnJheShlLmdldEltYWdlRGF0YSgwLDAsZS5jYW52YXMud2lkdGgsZS5jYW52YXMuaGVpZ2h0KS5kYXRhKSxyPShlLmNsZWFyUmVjdCgwLDAsZS5jYW52YXMud2lkdGgsZS5jYW52YXMuaGVpZ2h0KSxlLmZpbGxUZXh0KG4sMCwwKSxuZXcgVWludDMyQXJyYXkoZS5nZXRJbWFnZURhdGEoMCwwLGUuY2FudmFzLndpZHRoLGUuY2FudmFzLmhlaWdodCkuZGF0YSkpO3JldHVybiB0LmV2ZXJ5KGZ1bmN0aW9uKGUsdCl7cmV0dXJuIGU9PT1yW3RdfSl9ZnVuY3Rpb24gdShlLHQsbil7c3dpdGNoKHQpe2Nhc2UiZmxhZyI6cmV0dXJuIG4oZSwiXHVkODNjXHVkZmYzXHVmZTBmXHUyMDBkXHUyNmE3XHVmZTBmIiwiXHVkODNjXHVkZmYzXHVmZTBmXHUyMDBiXHUyNmE3XHVmZTBmIik/ITE6IW4oZSwiXHVkODNjXHVkZGZhXHVkODNjXHVkZGYzIiwiXHVkODNjXHVkZGZhXHUyMDBiXHVkODNjXHVkZGYzIikmJiFuKGUsIlx1ZDgzY1x1ZGZmNFx1ZGI0MFx1ZGM2N1x1ZGI0MFx1ZGM2Mlx1ZGI0MFx1ZGM2NVx1ZGI0MFx1ZGM2ZVx1ZGI0MFx1ZGM2N1x1ZGI0MFx1ZGM3ZiIsIlx1ZDgzY1x1ZGZmNFx1MjAwYlx1ZGI0MFx1ZGM2N1x1MjAwYlx1ZGI0MFx1ZGM2Mlx1MjAwYlx1ZGI0MFx1ZGM2NVx1MjAwYlx1ZGI0MFx1ZGM2ZVx1MjAwYlx1ZGI0MFx1ZGM2N1x1MjAwYlx1ZGI0MFx1ZGM3ZiIpO2Nhc2UiZW1vamkiOnJldHVybiFuKGUsIlx1ZDgzZVx1ZGVmMVx1ZDgzY1x1ZGZmYlx1MjAwZFx1ZDgzZVx1ZGVmMlx1ZDgzY1x1ZGZmZiIsIlx1ZDgzZVx1ZGVmMVx1ZDgzY1x1ZGZmYlx1MjAwYlx1ZDgzZVx1ZGVmMlx1ZDgzY1x1ZGZmZiIpfXJldHVybiExfWZ1bmN0aW9uIGYoZSx0LG4pe3ZhciByPSJ1bmRlZmluZWQiIT10eXBlb2YgV29ya2VyR2xvYmFsU2NvcGUmJnNlbGYgaW5zdGFuY2VvZiBXb3JrZXJHbG9iYWxTY29wZT9uZXcgT2Zmc2NyZWVuQ2FudmFzKDMwMCwxNTApOmkuY3JlYXRlRWxlbWVudCgiY2FudmFzIiksYT1yLmdldENvbnRleHQoIjJkIix7d2lsbFJlYWRGcmVxdWVudGx5OiEwfSksbz0oYS50ZXh0QmFzZWxpbmU9InRvcCIsYS5mb250PSI2MDAgMzJweCBBcmlhbCIse30pO3JldHVybiBlLmZvckVhY2goZnVuY3Rpb24oZSl7b1tlXT10KGEsZSxuKX0pLG99ZnVuY3Rpb24gdChlKXt2YXIgdD1pLmNyZWF0ZUVsZW1lbnQoInNjcmlwdCIpO3Quc3JjPWUsdC5kZWZlcj0hMCxpLmhlYWQuYXBwZW5kQ2hpbGQodCl9InVuZGVmaW5lZCIhPXR5cGVvZiBQcm9taXNlJiYobz0id3BFbW9qaVNldHRpbmdzU3VwcG9ydHMiLHM9WyJmbGFnIiwiZW1vamkiXSxuLnN1cHBvcnRzPXtldmVyeXRoaW5nOiEwLGV2ZXJ5dGhpbmdFeGNlcHRGbGFnOiEwfSxlPW5ldyBQcm9taXNlKGZ1bmN0aW9uKGUpe2kuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsZSx7b25jZTohMH0pfSksbmV3IFByb21pc2UoZnVuY3Rpb24odCl7dmFyIG49ZnVuY3Rpb24oKXt0cnl7dmFyIGU9SlNPTi5wYXJzZShzZXNzaW9uU3RvcmFnZS5nZXRJdGVtKG8pKTtpZigib2JqZWN0Ij09dHlwZW9mIGUmJiJudW1iZXIiPT10eXBlb2YgZS50aW1lc3RhbXAmJihuZXcgRGF0ZSkudmFsdWVPZigpPGUudGltZXN0YW1wKzYwNDgwMCYmIm9iamVjdCI9PXR5cGVvZiBlLnN1cHBvcnRUZXN0cylyZXR1cm4gZS5zdXBwb3J0VGVzdHN9Y2F0Y2goZSl7fXJldHVybiBudWxsfSgpO2lmKCFuKXtpZigidW5kZWZpbmVkIiE9dHlwZW9mIFdvcmtlciYmInVuZGVmaW5lZCIhPXR5cGVvZiBPZmZzY3JlZW5DYW52YXMmJiJ1bmRlZmluZWQiIT10eXBlb2YgVVJMJiZVUkwuY3JlYXRlT2JqZWN0VVJMJiYidW5kZWZpbmVkIiE9dHlwZW9mIEJsb2IpdHJ5e3ZhciBlPSJwb3N0TWVzc2FnZSgiK2YudG9TdHJpbmcoKSsiKCIrW0pTT04uc3RyaW5naWZ5KHMpLHUudG9TdHJpbmcoKSxwLnRvU3RyaW5nKCldLmpvaW4oIiwiKSsiKSk7IixyPW5ldyBCbG9iKFtlXSx7dHlwZToidGV4dC9qYXZhc2NyaXB0In0pLGE9bmV3IFdvcmtlcihVUkwuY3JlYXRlT2JqZWN0VVJMKHIpLHtuYW1lOiJ3cFRlc3RFbW9qaVN1cHBvcnRzIn0pO3JldHVybiB2b2lkKGEub25tZXNzYWdlPWZ1bmN0aW9uKGUpe2Mobj1lLmRhdGEpLGEudGVybWluYXRlKCksdChuKX0pfWNhdGNoKGUpe31jKG49ZihzLHUscCkpfXQobil9KS50aGVuKGZ1bmN0aW9uKGUpe2Zvcih2YXIgdCBpbiBlKW4uc3VwcG9ydHNbdF09ZVt0XSxuLnN1cHBvcnRzLmV2ZXJ5dGhpbmc9bi5zdXBwb3J0cy5ldmVyeXRoaW5nJiZuLnN1cHBvcnRzW3RdLCJmbGFnIiE9PXQmJihuLnN1cHBvcnRzLmV2ZXJ5dGhpbmdFeGNlcHRGbGFnPW4uc3VwcG9ydHMuZXZlcnl0aGluZ0V4Y2VwdEZsYWcmJm4uc3VwcG9ydHNbdF0pO24uc3VwcG9ydHMuZXZlcnl0aGluZ0V4Y2VwdEZsYWc9bi5zdXBwb3J0cy5ldmVyeXRoaW5nRXhjZXB0RmxhZyYmIW4uc3VwcG9ydHMuZmxhZyxuLkRPTVJlYWR5PSExLG4ucmVhZHlDYWxsYmFjaz1mdW5jdGlvbigpe24uRE9NUmVhZHk9ITB9fSkudGhlbihmdW5jdGlvbigpe3JldHVybiBlfSkudGhlbihmdW5jdGlvbigpe3ZhciBlO24uc3VwcG9ydHMuZXZlcnl0aGluZ3x8KG4ucmVhZHlDYWxsYmFjaygpLChlPW4uc291cmNlfHx7fSkuY29uY2F0ZW1vamk/dChlLmNvbmNhdGVtb2ppKTplLndwZW1vamkmJmUudHdlbW9qaSYmKHQoZS50d2Vtb2ppKSx0KGUud3BlbW9qaSkpKX0pKX0oKHdpbmRvdyxkb2N1bWVudCksd2luZG93Ll93cGVtb2ppU2V0dGluZ3MpOwo="></script> <style>img.wp-smiley,
img.emoji {
	display: inline !important;
	border: none !important;
	box-shadow: none !important;
	height: 1em !important;
	width: 1em !important;
	margin: 0 0.07em !important;
	vertical-align: -0.1em !important;
	background: none !important;
	padding: 0 !important;
}</style><link rel="stylesheet" id="wp-block-library-css" href="https://g-step.co.uk/wp-includes/css/dist/block-library/style.min.css?ver=6.3.2" media="all"><style id="classic-theme-styles-inline-css">/*! This file is auto-generated */
.wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none}</style><style id="global-styles-inline-css">body{--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--color--accent-1: #0085b2;--wp--preset--color--accent-2: #f42b00;--wp--preset--color--headings: #333;--wp--preset--color--sitetext: #555;--wp--preset--color--sitebg: #fff;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 10px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 25px;--wp--preset--font-size--x-large: 42px;--wp--preset--font-size--normal: 16px;--wp--preset--font-size--larger: 40px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flow > .alignleft{float: left;margin-inline-start: 0;margin-inline-end: 2em;}body .is-layout-flow > .alignright{float: right;margin-inline-start: 2em;margin-inline-end: 0;}body .is-layout-flow > .aligncenter{margin-left: auto !important;margin-right: auto !important;}body .is-layout-constrained > .alignleft{float: left;margin-inline-start: 0;margin-inline-end: 2em;}body .is-layout-constrained > .alignright{float: right;margin-inline-start: 2em;margin-inline-end: 0;}body .is-layout-constrained > .aligncenter{margin-left: auto !important;margin-right: auto !important;}body .is-layout-constrained > :where(:not(.alignleft):not(.alignright):not(.alignfull)){max-width: var(--wp--style--global--content-size);margin-left: auto !important;margin-right: auto !important;}body .is-layout-constrained > .alignwide{max-width: var(--wp--style--global--wide-size);}body .is-layout-flex{display: flex;}body .is-layout-flex{flex-wrap: wrap;align-items: center;}body .is-layout-flex > *{margin: 0;}body .is-layout-grid{display: grid;}body .is-layout-grid > *{margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;}
.wp-block-navigation a:where(:not(.wp-element-button)){color: inherit;}
:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}
:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}
.wp-block-pullquote{font-size: 1.5em;line-height: 1.6;}</style><link rel="stylesheet" id="fluida-themefonts-css" href="https://g-step.co.uk/wp-content/themes/fluida/resources/fonts/fontfaces.css?ver=1.8.6.2" media="all"><link rel="stylesheet" id="fluida-googlefonts-css" href="//fonts.googleapis.com/css?family=Open+Sans%3A%7COpen+Sans+Condensed%3A300%7COpen+Sans%3A100%2C200%2C300%2C400%2C500%2C600%2C700%2C800%2C900%7COpen+Sans%3A700%7COpen+Sans%3A300&amp;ver=1.8.6.2" media="all"><link rel="stylesheet" id="fluida-main-css" href="https://g-step.co.uk/wp-content/cache/autoptimize/autoptimize_single_6460749052226ad6f10d303dd270a2ab.php?ver=1.8.6.2" media="all"><style id="fluida-main-inline-css">#site-header-main-inside, #container, #colophon-inside, #footer-inside, #breadcrumbs-container-inside, #wp-custom-header { margin: 0 auto; max-width: 1920px; } #site-header-main { left: 0; right: 0; } #primary { width: 320px; } #secondary { width: 320px; } #container.one-column { } #container.two-columns-right #secondary { float: right; } #container.two-columns-right .main, .two-columns-right #breadcrumbs { width: calc( 98% - 320px ); float: left; } #container.two-columns-left #primary { float: left; } #container.two-columns-left .main, .two-columns-left #breadcrumbs { width: calc( 98% - 320px ); float: right; } #container.three-columns-right #primary, #container.three-columns-left #primary, #container.three-columns-sided #primary { float: left; } #container.three-columns-right #secondary, #container.three-columns-left #secondary, #container.three-columns-sided #secondary { float: left; } #container.three-columns-right #primary, #container.three-columns-left #secondary { margin-left: 2%; margin-right: 2%; } #container.three-columns-right .main, .three-columns-right #breadcrumbs { width: calc( 96% - 640px ); float: left; } #container.three-columns-left .main, .three-columns-left #breadcrumbs { width: calc( 96% - 640px ); float: right; } #container.three-columns-sided #secondary { float: right; } #container.three-columns-sided .main, .three-columns-sided #breadcrumbs { width: calc( 96% - 640px ); float: right; margin: 0 calc( 2% + 320px ) 0 -1920px; } html { font-family: Open Sans; font-size: 16px; font-weight: 300; line-height: 1.8; } #site-title { font-family: Open Sans Condensed; font-size: 150%; font-weight: 300; } #access ul li a { font-family: Open Sans Condensed; font-size: 105%; font-weight: 300; } #access i.search-icon { ; } .widget-title { font-family: Open Sans; font-size: 100%; font-weight: 700; } .widget-container { font-family: Open Sans; font-size: 100%; font-weight: 300; } .entry-title, #reply-title, .woocommerce .main .page-title, .woocommerce .main .entry-title { font-family: Open Sans; font-size: 250%; font-weight: 300; } .content-masonry .entry-title { font-size: 187.5%; } h1 { font-size: 3.029em; } h2 { font-size: 2.678em; } h3 { font-size: 2.327em; } h4 { font-size: 1.976em; } h5 { font-size: 1.625em; } h6 { font-size: 1.274em; } h1, h2, h3, h4, h5, h6 { font-family: Open Sans Condensed; font-weight: 300; } .lp-staticslider .staticslider-caption-title, .seriousslider.seriousslider-theme .seriousslider-caption-title { font-family: Open Sans Condensed; } body { color: #555; background-color: #F3F3F3; } #site-header-main, #site-header-main-inside, #access ul li a, #access ul ul, #access::after { background-color: #fff; } #access .menu-main-search .searchform { border-color: #0085b2; background-color: #0085b2; } .menu-search-animated .searchform input[type="search"], .menu-search-animated .searchform input[type="search"]:focus { color: #fff; } #header a { color: #0085b2; } #access > div > ul > li, #access > div > ul > li > a { color: #0085b2; } #access ul.sub-menu li a, #access ul.children li a { color: #555; } #access ul.sub-menu li:hover > a, #access ul.children li:hover > a { background-color: rgba(85,85,85,0.1); } #access > div > ul > li:hover > a { color: #fff; } #access ul > li.current_page_item > a, #access ul > li.current-menu-item > a, #access ul > li.current_page_ancestor > a, #access ul > li.current-menu-ancestor > a, #access .sub-menu, #access .children { border-top-color: #0085b2; } #access ul ul ul { border-left-color: rgba(85,85,85,0.5); } #access > div > ul > li:hover > a { background-color: #0085b2; } #access ul.children > li.current_page_item > a, #access ul.sub-menu > li.current-menu-item > a, #access ul.children > li.current_page_ancestor > a, #access ul.sub-menu > li.current-menu-ancestor > a { border-color: #555; } .searchform .searchsubmit, .searchform:hover input[type="search"], .searchform input[type="search"]:focus { color: #fff; background-color: transparent; } .searchform::after, .searchform input[type="search"]:focus, .searchform .searchsubmit:hover { background-color: #0085b2; } article.hentry, #primary, .searchform, .main > div:not(#content-masonry), .main > header, .main > nav#nav-below, .pagination span, .pagination a, #nav-old-below .nav-previous, #nav-old-below .nav-next { background-color: #fff; } #breadcrumbs-container { background-color: #f8f8f8;} #secondary { ; } #colophon, #footer { background-color: #222226; color: #AAA; } span.entry-format { color: #0085b2; } .format-aside { border-top-color: #F3F3F3; } article.hentry .post-thumbnail-container { background-color: rgba(85,85,85,0.15); } .entry-content blockquote::before, .entry-content blockquote::after { color: rgba(85,85,85,0.1); } .entry-content h1, .entry-content h2, .entry-content h3, .entry-content h4, .lp-text-content h1, .lp-text-content h2, .lp-text-content h3, .lp-text-content h4 { color: #333; } a { color: #0085b2; } a:hover, .entry-meta span a:hover, .comments-link a:hover { color: #f42b00; } #footer a, .page-title strong { color: #0085b2; } #footer a:hover, #site-title a:hover span { color: #f42b00; } #access > div > ul > li.menu-search-animated:hover i { color: #fff; } .continue-reading-link { color: #fff; background-color: #f42b00} .continue-reading-link:before { background-color: #0085b2} .continue-reading-link:hover { color: #fff; } header.pad-container { border-top-color: #0085b2; } article.sticky:after { background-color: rgba(0,133,178,1); } .socials a:before { color: #0085b2; } .socials a:hover:before { color: #f42b00; } .fluida-normalizedtags #content .tagcloud a { color: #fff; background-color: #0085b2; } .fluida-normalizedtags #content .tagcloud a:hover { background-color: #f42b00; } #toTop .icon-back2top:before { color: #0085b2; } #toTop:hover .icon-back2top:before { color: #f42b00; } .entry-meta .icon-metas:before { color: #f42b00; } .page-link a:hover { border-top-color: #f42b00; } #site-title span a span:nth-child(1) { background-color: #0085b2; color: #fff; width: 1.4em; margin-right: .1em; text-align: center; line-height: 1.4; font-weight: 300; } #site-title span a:hover span:nth-child(1) { background-color: #f42b00; } .fluida-caption-one .main .wp-caption .wp-caption-text { border-bottom-color: #eeeeee; } .fluida-caption-two .main .wp-caption .wp-caption-text { background-color: #f5f5f5; } .fluida-image-one .entry-content img[class*="align"], .fluida-image-one .entry-summary img[class*="align"], .fluida-image-two .entry-content img[class*='align'], .fluida-image-two .entry-summary img[class*='align'] { border-color: #eeeeee; } .fluida-image-five .entry-content img[class*='align'], .fluida-image-five .entry-summary img[class*='align'] { border-color: #0085b2; } /* diffs */ span.edit-link a.post-edit-link, span.edit-link a.post-edit-link:hover, span.edit-link .icon-edit:before { color: #9a9a9a; } .searchform { border-color: #ebebeb; } .entry-meta span, .entry-utility span, .entry-meta time, .comment-meta a, #breadcrumbs-nav .icon-angle-right::before, .footermenu ul li span.sep { color: #9a9a9a; } #footer { border-top-color: #36363a; } #colophon .widget-container:after { background-color: #36363a; } #commentform { max-width:650px;} code, .reply a:after, #nav-below .nav-previous a:before, #nav-below .nav-next a:before, .reply a:after { background-color: #eeeeee; } pre, .entry-meta .author, nav.sidebarmenu, .page-link > span, article .author-info, .comment-author, .commentlist .comment-body, .commentlist .pingback, nav.sidebarmenu li a { border-color: #eeeeee; } select, input[type], textarea { color: #555; } button, input[type="button"], input[type="submit"], input[type="reset"] { background-color: #0085b2; color: #fff; } button:hover, input[type="button"]:hover, input[type="submit"]:hover, input[type="reset"]:hover { background-color: #f42b00; } select, input[type], textarea { border-color: #e9e9e9; } input[type]:hover, textarea:hover, select:hover, input[type]:focus, textarea:focus, select:focus { border-color: #cdcdcd; } hr { background-color: #e9e9e9; } #toTop { background-color: rgba(250,250,250,0.8) } /* gutenberg */ .wp-block-image.alignwide { margin-left: -15%; margin-right: -15%; } .wp-block-image.alignwide img { width: 130%; max-width: 130%; } .has-accent-1-color, .has-accent-1-color:hover { color: #0085b2; } .has-accent-2-color, .has-accent-2-color:hover { color: #f42b00; } .has-headings-color, .has-headings-color:hover { color: #333; } .has-sitetext-color, .has-sitetext-color:hover { color: #555; } .has-sitebg-color, .has-sitebg-color:hover { color: #fff; } .has-accent-1-background-color { background-color: #0085b2; } .has-accent-2-background-color { background-color: #f42b00; } .has-headings-background-color { background-color: #333; } .has-sitetext-background-color { background-color: #555; } .has-sitebg-background-color { background-color: #fff; } .has-small-font-size { font-size: 10px; } .has-regular-font-size { font-size: 16px; } .has-large-font-size { font-size: 25px; } .has-larger-font-size { font-size: 40px; } .has-huge-font-size { font-size: 40px; } /* woocommerce */ .woocommerce-page #respond input#submit.alt, .woocommerce a.button.alt, .woocommerce-page button.button.alt, .woocommerce input.button.alt, .woocommerce #respond input#submit, .woocommerce a.button, .woocommerce button.button, .woocommerce input.button { background-color: #0085b2; color: #fff; line-height: 1.8; } .woocommerce #respond input#submit:hover, .woocommerce a.button:hover, .woocommerce button.button:hover, .woocommerce input.button:hover { background-color: #22a7d4; color: #fff;} .woocommerce-page #respond input#submit.alt, .woocommerce a.button.alt, .woocommerce-page button.button.alt, .woocommerce input.button.alt { background-color: #f42b00; color: #fff; line-height: 1.8; } .woocommerce-page #respond input#submit.alt:hover, .woocommerce a.button.alt:hover, .woocommerce-page button.button.alt:hover, .woocommerce input.button.alt:hover { background-color: #ff4d22; color: #fff;} .woocommerce div.product .woocommerce-tabs ul.tabs li.active { border-bottom-color: #fff; } .woocommerce #respond input#submit.alt.disabled, .woocommerce #respond input#submit.alt.disabled:hover, .woocommerce #respond input#submit.alt:disabled, .woocommerce #respond input#submit.alt:disabled:hover, .woocommerce #respond input#submit.alt[disabled]:disabled, .woocommerce #respond input#submit.alt[disabled]:disabled:hover, .woocommerce a.button.alt.disabled, .woocommerce a.button.alt.disabled:hover, .woocommerce a.button.alt:disabled, .woocommerce a.button.alt:disabled:hover, .woocommerce a.button.alt[disabled]:disabled, .woocommerce a.button.alt[disabled]:disabled:hover, .woocommerce button.button.alt.disabled, .woocommerce button.button.alt.disabled:hover, .woocommerce button.button.alt:disabled, .woocommerce button.button.alt:disabled:hover, .woocommerce button.button.alt[disabled]:disabled, .woocommerce button.button.alt[disabled]:disabled:hover, .woocommerce input.button.alt.disabled, .woocommerce input.button.alt.disabled:hover, .woocommerce input.button.alt:disabled, .woocommerce input.button.alt:disabled:hover, .woocommerce input.button.alt[disabled]:disabled, .woocommerce input.button.alt[disabled]:disabled:hover { background-color: #f42b00; } .woocommerce ul.products li.product .price, .woocommerce div.product p.price, .woocommerce div.product span.price { color: #232323 } #add_payment_method #payment, .woocommerce-cart #payment, .woocommerce-checkout #payment { background: #f5f5f5; } /* mobile menu */ nav#mobile-menu { background-color: #fff; color: #0085b2;} #mobile-menu .menu-main-search input[type="search"] { color: #0085b2; } .main .entry-content, .main .entry-summary { text-align: inherit; } .main p, .main ul, .main ol, .main dd, .main pre, .main hr { margin-bottom: 1em; } .main .entry-content p { text-indent: 0em; } .main a.post-featured-image { background-position: center center; } #content { margin-top: 20px; } #content { padding-left: 0px; padding-right: 0px; } #header-widget-area { width: 33%; right: 10px; } .fluida-stripped-table .main thead th, .fluida-bordered-table .main thead th, .fluida-stripped-table .main td, .fluida-stripped-table .main th, .fluida-bordered-table .main th, .fluida-bordered-table .main td { border-color: #e9e9e9; } .fluida-clean-table .main th, .fluida-stripped-table .main tr:nth-child(even) td, .fluida-stripped-table .main tr:nth-child(even) th { background-color: #f6f6f6; } .fluida-cropped-featured .main .post-thumbnail-container { height: 200px; } .fluida-responsive-featured .main .post-thumbnail-container { max-height: 200px; height: auto; } #secondary { border: 0; box-shadow: none; } #primary + #secondary { padding-left: 1em; } article.hentry .article-inner, #breadcrumbs-nav, body.woocommerce.woocommerce-page #breadcrumbs-nav, #content-masonry article.hentry .article-inner, .pad-container { padding-left: 10%; padding-right: 10%; } .fluida-magazine-two.archive #breadcrumbs-nav, .fluida-magazine-two.archive .pad-container, .fluida-magazine-two.search #breadcrumbs-nav, .fluida-magazine-two.search .pad-container, .fluida-magazine-two.page-template-template-page-with-intro #breadcrumbs-nav, .fluida-magazine-two.page-template-template-page-with-intro .pad-container { padding-left: 5%; padding-right: 5%; } .fluida-magazine-three.archive #breadcrumbs-nav, .fluida-magazine-three.archive .pad-container, .fluida-magazine-three.search #breadcrumbs-nav, .fluida-magazine-three.search .pad-container, .fluida-magazine-three.page-template-template-page-with-intro #breadcrumbs-nav, .fluida-magazine-three.page-template-template-page-with-intro .pad-container { padding-left: 3.3333333333333%; padding-right: 3.3333333333333%; } #site-header-main { height:100px; } #sheader, .identity, #nav-toggle { height:100px; line-height:100px; } #access div > ul > li > a { line-height:98px; } #access .menu-main-search > a, #branding { height:100px; } .fluida-responsive-headerimage #masthead #header-image-main-inside { max-height: 250px; } .fluida-cropped-headerimage #masthead div.header-image { height: 250px; } #masthead #site-header-main { position: fixed; top: 0; box-shadow: 0 0 3px rgba(0,0,0,0.2); } #header-image-main { margin-top: 100px; } .fluida-landing-page .lp-blocks-inside, .fluida-landing-page .lp-boxes-inside, .fluida-landing-page .lp-text-inside, .fluida-landing-page .lp-posts-inside, .fluida-landing-page .lp-section-header { max-width: 1280px; } .seriousslider-theme .seriousslider-caption-buttons a:nth-child(2n+1), a.staticslider-button:nth-child(2n+1) { color: #555; border-color: #fff; background-color: #fff; } .seriousslider-theme .seriousslider-caption-buttons a:nth-child(2n+1):hover, a.staticslider-button:nth-child(2n+1):hover { color: #fff; } .seriousslider-theme .seriousslider-caption-buttons a:nth-child(2n), a.staticslider-button:nth-child(2n) { border-color: #fff; color: #fff; } .seriousslider-theme .seriousslider-caption-buttons a:nth-child(2n):hover, .staticslider-button:nth-child(2n):hover { color: #555; background-color: #fff; } .lp-blocks { ; } .lp-block > i::before { color: #0085b2; } .lp-block:hover i::before { color: #f42b00; } .lp-block i:after { background-color: #0085b2; } .lp-block:hover i:after { background-color: #f42b00; } .lp-block-text, .lp-boxes-static .lp-box-text, .lp-section-desc { color: #919191; } .lp-text { background-color: #FFF; } .lp-boxes-1 .lp-box .lp-box-image { height: 250px; } .lp-boxes-1.lp-boxes-animated .lp-box:hover .lp-box-text { max-height: 150px; } .lp-boxes-2 .lp-box .lp-box-image { height: 400px; } .lp-boxes-2.lp-boxes-animated .lp-box:hover .lp-box-text { max-height: 300px; } .lp-box-readmore { color: #0085b2; } .lp-boxes { ; } .lp-boxes .lp-box-overlay { background-color: rgba(0,133,178, 0.9); } .lpbox-rnd1 { background-color: #c8c8c8; } .lpbox-rnd2 { background-color: #c3c3c3; } .lpbox-rnd3 { background-color: #bebebe; } .lpbox-rnd4 { background-color: #b9b9b9; } .lpbox-rnd5 { background-color: #b4b4b4; } .lpbox-rnd6 { background-color: #afafaf; } .lpbox-rnd7 { background-color: #aaaaaa; } .lpbox-rnd8 { background-color: #a5a5a5; }</style> <script defer src="https://g-step.co.uk/wp-includes/js/jquery/jquery.min.js?ver=3.7.0" id="jquery-core-js"></script> <script defer src="https://g-step.co.uk/wp-includes/js/jquery/jquery-migrate.min.js?ver=3.4.1" id="jquery-migrate-js"></script> <!--[if lt IE 9]> <script src='https://g-step.co.uk/wp-content/themes/fluida/resources/js/html5shiv.min.js?ver=1.8.6.2' id='fluida-html5shiv-js'></script> <![endif]--><style>.recentcomments a{display:inline !important;padding:0 !important;margin:0 !important;}</style></head><body class="post-template-default single single-post postid-3411 single-format-standard wp-embed-responsive fluida-image-one fluida-caption-two fluida-totop-normal fluida-stripped-table fluida-fixed-menu fluida-responsive-headerimage fluida-responsive-featured fluida-magazine-two fluida-magazine-layout fluida-comment-placeholder fluida-elementshadow fluida-normalizedtags fluida-article-animation-fade fluida-menu-animation" itemscope itemtype="http://schema.org/WebPage"> <a class="skip-link screen-reader-text" href="{{ KEYWORDBYINDEX-ANCHOR 0 }}" title="Skip to content">{{ KEYWORDBYINDEX 0 }}</a><div id="site-wrapper"><header id="masthead" class="cryout" itemscope itemtype="http://schema.org/WPHeader"><div id="site-header-main"><div id="site-header-main-inside"><nav id="mobile-menu"><div><ul id="mobile-nav" class=""><li id="menu-item-35" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-home menu-item-35"><a href="{{ KEYWORDBYINDEX-ANCHOR 1 }}"><span>Home</span></a></li><li id="menu-item-38" class="menu-item menu-item-type-post_type menu-item-object-post menu-item-has-children menu-item-38"><a href="{{ KEYWORDBYINDEX-ANCHOR 2 }}"><span>Sustainable At Home</span></a><ul class="sub-menu"><li id="menu-item-39" class="menu-item menu-item-type-post_type menu-item-object-post menu-item-39"><a href="{{ KEYWORDBYINDEX-ANCHOR 3 }}"><span>Solar Electricity</span></a></li><li id="menu-item-40" class="menu-item menu-item-type-post_type menu-item-object-post menu-item-40"><a href="{{ KEYWORDBYINDEX-ANCHOR 4 }}"><span>The benefits of combining your electrics</span></a></li></ul></li><li id="menu-item-208" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-208"><a href="{{ KEYWORDBYINDEX-ANCHOR 5 }}"><span>Experiments, Research &amp; Results</span></a></li><li id="menu-item-41" class="menu-item menu-item-type-post_type menu-item-object-post menu-item-41"><a href="{{ KEYWORDBYINDEX-ANCHOR 6 }}"><span>The Use Of Satellite</span></a></li><li id="menu-item-224" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-224"><a href="{{ KEYWORDBYINDEX-ANCHOR 7 }}"><span>Latest Experiments</span></a></li><li id="menu-item-380" class="menu-item menu-item-type-post_type menu-item-object-post menu-item-380"><a href="{{ KEYWORDBYINDEX-ANCHOR 8 }}"><span>Cabling</span></a></li><li id="menu-item-36" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-36"><a href="{{ KEYWORDBYINDEX-ANCHOR 9 }}"><span>About</span></a></li><li id="menu-item-37" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-37"><a href="{{ KEYWORDBYINDEX-ANCHOR 10 }}"><span>Contact</span></a></li><li class="menu-main-search menu-search-animated"> <a role="link" href><i class="search-icon"></i><span class="screen-reader-text">Search</span></a></li></ul></div> <button id="nav-cancel"><i class="blicon-cross3"></i></button></nav><div id="branding"><div id="site-text"><div itemprop="headline" id="site-title"><span> <a href="{{ KEYWORDBYINDEX-ANCHOR 11 }}" title="Providing you with scientific research on sustainability and the environment" rel="home">{{ KEYWORDBYINDEX 11 }}</a> </span></div><span id="site-description" itemprop="description">Providing you with scientific research on sustainability and the environment</span></div></div><nav id="sheader" class="socials"><a target="_blank" href="{{ KEYWORDBYINDEX-ANCHOR 12 }}" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-195"><span>Facebook</span></a><a target="_blank" href="{{ KEYWORDBYINDEX-ANCHOR 13 }}" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-196"><span>Twitter</span></a><a target="_blank" href="{{ KEYWORDBYINDEX-ANCHOR 14 }}" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-197"><span>Google Plus</span></a><a href="#" class="custom menu-item menu-item-type-custom menu-item-object-custom menu-item-198"><span>Custom Social</span></a></nav> <a id="nav-toggle" href="#"><span>&#160;</span></a><nav id="access" role="navigation" aria-label="Primary Menu" itemscope itemtype="http://schema.org/SiteNavigationElement"><div><ul id="prime_nav" class=""><li class="menu-item menu-item-type-custom menu-item-object-custom menu-item-home menu-item-35"><a href="{{ KEYWORDBYINDEX-ANCHOR 15 }}"><span>Home</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-has-children menu-item-38"><a href="{{ KEYWORDBYINDEX-ANCHOR 16 }}"><span>Sustainable At Home</span></a><ul class="sub-menu"><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-39"><a href="{{ KEYWORDBYINDEX-ANCHOR 17 }}"><span>Solar Electricity</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-40"><a href="{{ KEYWORDBYINDEX-ANCHOR 18 }}"><span>The benefits of combining your electrics</span></a></li></ul></li><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-208"><a href="{{ KEYWORDBYINDEX-ANCHOR 19 }}"><span>Experiments, Research &amp; Results</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-41"><a href="{{ KEYWORDBYINDEX-ANCHOR 20 }}"><span>The Use Of Satellite</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-224"><a href="{{ KEYWORDBYINDEX-ANCHOR 21 }}"><span>Latest Experiments</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-post menu-item-380"><a href="{{ KEYWORDBYINDEX-ANCHOR 22 }}"><span>Cabling</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-36"><a href="{{ KEYWORDBYINDEX-ANCHOR 23 }}"><span>About</span></a></li><li class="menu-item menu-item-type-post_type menu-item-object-page menu-item-37"><a href="{{ KEYWORDBYINDEX-ANCHOR 24 }}"><span>Contact</span></a></li><li class="menu-main-search menu-search-animated"> <a role="link" href><i class="search-icon"></i><span class="screen-reader-text">Search</span></a></li></ul></div></nav></div></div><div id="header-image-main"><div id="header-image-main-inside"><div class="header-image" style="background-image: url(https://g-step.co.uk/wp-content/themes/fluida/resources/images/headers/droplets.jpg)"></div> <img class="header-image" alt="{{ keyword }}" src="https://g-step.co.uk/wp-content/themes/fluida/resources/images/headers/droplets.jpg"></div></div></header><div id="breadcrumbs-container" class="cryout three-columns-sided"><div id="breadcrumbs-container-inside"><div id="breadcrumbs"><nav id="breadcrumbs-nav"><a href="{{ KEYWORDBYINDEX-ANCHOR 25 }}" title="Home"><i class="blicon-home2"></i><span class="screen-reader-text">Home</span></a><i class="icon-angle-right"></i> <a href="{{ KEYWORDBYINDEX-ANCHOR 26 }}">{{ KEYWORDBYINDEX 26 }}</a> <i class="icon-angle-right"></i> <span class="current">{{ keyword }}</span></nav></div></div></div><div id="content" class="cryout"><div id="container" class="three-columns-sided"><main id="main" class="main"><article id="post-3411" class="post-3411 post type-post status-publish format-standard hentry category-uncategorized" itemscope itemtype="http://schema.org/Article" itemprop="mainEntity"><div class="schema-image"></div><div class="article-inner"><header><div class="entry-meta"> <span class="bl_categ"> <i class="icon-folder-open icon-metas" title="Categories"></i><a href="{{ KEYWORDBYINDEX-ANCHOR 27 }}" rel="category tag">{{ KEYWORDBYINDEX 27 }}</a></span></div><h1 class="entry-title" itemprop="headline">{{ keyword }}</h1><div class="entry-meta"> <span class="author vcard" itemscope itemtype="http://schema.org/Person" itemprop="author"> <em>By</em> <a class="url fn n" rel="author" href="{{ KEYWORDBYINDEX-ANCHOR 28 }}" title="View all posts by " itemprop="url">{{ KEYWORDBYINDEX 28 }}<em itemprop="name"></em> </a> </span> <span class="onDate date"> <i class="icon-time icon-metas" title="Date"></i> <time class="published" datetime="2023-10-21T13:36:01+00:00" itemprop="datePublished">October 21, 2023</time> <time class="updated" datetime="2023-10-21T13:36:01+00:00" itemprop="dateModified">October 21, 2023</time> </span></div></header><div class="entry-content" itemprop="articleBody"><p>{{ text }}</p><p>{{ links }}</p></div><footer class="entry-meta"></footer><nav id="nav-below" class="navigation" role="navigation"><div class="nav-previous"><a href="{{ KEYWORDBYINDEX-ANCHOR 29 }}" rel="prev"><i class="icon-angle-left"></i> <span>Becoming Sustainable At Home</span></a></div><div class="nav-next"></div></nav><section id="comments"></section> <span class="schema-publisher" itemprop="publisher" itemscope itemtype="https://schema.org/Organization"> <span itemprop="logo" itemscope itemtype="https://schema.org/ImageObject"><meta itemprop="url" content="https://g-step.co.uk"> </span><meta itemprop="name" content="G-Step Research"> </span><link itemprop="mainEntityOfPage" href="https://g-step.co.uk/1b6vcvgf"></div></article></main></div><aside id="colophon" itemscope itemtype="http://schema.org/WPSideBar"><div id="colophon-inside" class="footer-three "></div></aside></div><footer id="footer" class="cryout" itemscope itemtype="http://schema.org/WPFooter"><div id="footer-inside"> <a id="toTop"><span class="screen-reader-text">Back to Top</span><i class="icon-back2top"></i> </a><div id="site-copyright">&#169;2021 G-Step Research</div><div style="display:block;float:right;clear: right;font-size: .9em;">Powered by<a target="_blank" href="{{ KEYWORDBYINDEX-ANCHOR 30 }}" title="Fluida  Theme by Cryout Creations">{{ KEYWORDBYINDEX 30 }}</a> &amp; <a target="_blank" href="{{ KEYWORDBYINDEX-ANCHOR 31 }}" title="Semantic Personal Publishing Platform">{{ KEYWORDBYINDEX 31 }}</a></div></div></footer></div> <script defer id="fluida-frontend-js-extra" src="data:text/javascript;base64,CnZhciBjcnlvdXRfdGhlbWVfc2V0dGluZ3MgPSB7Im1hc29ucnkiOiIxIiwicnRsIjoiIiwibWFnYXppbmUiOiIyIiwiZml0dmlkcyI6IjEiLCJhdXRvc2Nyb2xsIjoiMSIsImFydGljbGVhbmltYXRpb24iOiJmYWRlIiwibHBib3hyYXRpb3MiOlsxLjcwNCwxLjJdLCJpc19tb2JpbGUiOiIiLCJtZW51c3R5bGUiOiIxIn07Cg=="></script> <script defer src="https://g-step.co.uk/wp-content/cache/autoptimize/autoptimize_single_2965b1d28bd3e9df4ab7861ae8212812.php?ver=1.8.6.2" id="fluida-frontend-js"></script> <script defer src="https://g-step.co.uk/wp-includes/js/imagesloaded.min.js?ver=4.1.4" id="imagesloaded-js"></script> <script defer src="https://g-step.co.uk/wp-includes/js/masonry.min.js?ver=4.2.2" id="masonry-js"></script> <script defer src="https://g-step.co.uk/wp-includes/js/jquery/jquery.masonry.min.js?ver=3.1.2b" id="jquery-masonry-js"></script> <script defer src="data:text/javascript;base64,DQogICAgICAgIGpRdWVyeShkb2N1bWVudCkucmVhZHkoZnVuY3Rpb24gKCQpIHsNCiAgICAgICAgICAgIC8vJCggZG9jdW1lbnQgKS5hamF4U3RhcnQoZnVuY3Rpb24oKSB7DQogICAgICAgICAgICAvL30pOw0KDQoJCQkNCiAgICAgICAgICAgIGZvciAodmFyIGkgPSAwOyBpIDwgZG9jdW1lbnQuZm9ybXMubGVuZ3RoOyArK2kpIHsNCiAgICAgICAgICAgICAgICB2YXIgZm9ybSA9IGRvY3VtZW50LmZvcm1zW2ldOw0KCQkJCWlmICgkKGZvcm0pLmF0dHIoIm1ldGhvZCIpICE9ICJnZXQiKSB7ICQoZm9ybSkuYXBwZW5kKCc8aW5wdXQgdHlwZT0iaGlkZGVuIiBuYW1lPSJKSG5TZllqY19aS3lwLSIgdmFsdWU9ImNFU3ZvVGVETUxzdGwwTiIgLz4nKTsgfQppZiAoJChmb3JtKS5hdHRyKCJtZXRob2QiKSAhPSAiZ2V0IikgeyAkKGZvcm0pLmFwcGVuZCgnPGlucHV0IHR5cGU9ImhpZGRlbiIgbmFtZT0iZ2ZzQkNsYy1VeERTSyIgdmFsdWU9IlBsUzVlWlJuTFhRV09WcyIgLz4nKTsgfQppZiAoJChmb3JtKS5hdHRyKCJtZXRob2QiKSAhPSAiZ2V0IikgeyAkKGZvcm0pLmFwcGVuZCgnPGlucHV0IHR5cGU9ImhpZGRlbiIgbmFtZT0iaGRPV0NlIiB2YWx1ZT0iNzVXW2NKRm5BIiAvPicpOyB9CmlmICgkKGZvcm0pLmF0dHIoIm1ldGhvZCIpICE9ICJnZXQiKSB7ICQoZm9ybSkuYXBwZW5kKCc8aW5wdXQgdHlwZT0iaGlkZGVuIiBuYW1lPSJYUUFDZG1jIiB2YWx1ZT0iXUZ5NDI4QkwiIC8+Jyk7IH0KICAgICAgICAgICAgfQ0KDQoJCQkNCiAgICAgICAgICAgICQoZG9jdW1lbnQpLm9uKCdzdWJtaXQnLCAnZm9ybScsIGZ1bmN0aW9uICgpIHsNCgkJCQlpZiAoJCh0aGlzKS5hdHRyKCJtZXRob2QiKSAhPSAiZ2V0IikgeyAkKHRoaXMpLmFwcGVuZCgnPGlucHV0IHR5cGU9ImhpZGRlbiIgbmFtZT0iSkhuU2ZZamNfWkt5cC0iIHZhbHVlPSJjRVN2b1RlRE1Mc3RsME4iIC8+Jyk7IH0KaWYgKCQodGhpcykuYXR0cigibWV0aG9kIikgIT0gImdldCIpIHsgJCh0aGlzKS5hcHBlbmQoJzxpbnB1dCB0eXBlPSJoaWRkZW4iIG5hbWU9Imdmc0JDbGMtVXhEU0siIHZhbHVlPSJQbFM1ZVpSbkxYUVdPVnMiIC8+Jyk7IH0KaWYgKCQodGhpcykuYXR0cigibWV0aG9kIikgIT0gImdldCIpIHsgJCh0aGlzKS5hcHBlbmQoJzxpbnB1dCB0eXBlPSJoaWRkZW4iIG5hbWU9ImhkT1dDZSIgdmFsdWU9Ijc1V1tjSkZuQSIgLz4nKTsgfQppZiAoJCh0aGlzKS5hdHRyKCJtZXRob2QiKSAhPSAiZ2V0IikgeyAkKHRoaXMpLmFwcGVuZCgnPGlucHV0IHR5cGU9ImhpZGRlbiIgbmFtZT0iWFFBQ2RtYyIgdmFsdWU9Il1GeTQyOEJMIiAvPicpOyB9CiAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsNCiAgICAgICAgICAgIH0pOw0KDQoJCQkNCiAgICAgICAgICAgIGpRdWVyeS5hamF4U2V0dXAoew0KICAgICAgICAgICAgICAgIGJlZm9yZVNlbmQ6IGZ1bmN0aW9uIChlLCBkYXRhKSB7DQoNCiAgICAgICAgICAgICAgICAgICAgLy9jb25zb2xlLmxvZyhPYmplY3QuZ2V0T3duUHJvcGVydHlOYW1lcyhkYXRhKS5zb3J0KCkpOw0KICAgICAgICAgICAgICAgICAgICAvL2NvbnNvbGUubG9nKGRhdGEudHlwZSk7DQoNCiAgICAgICAgICAgICAgICAgICAgaWYgKGRhdGEudHlwZSAhPT0gJ1BPU1QnKSByZXR1cm47DQoNCiAgICAgICAgICAgICAgICAgICAgaWYgKHR5cGVvZiBkYXRhLmRhdGEgPT09ICdvYmplY3QnICYmIGRhdGEuZGF0YSAhPT0gbnVsbCkgew0KCQkJCQkJZGF0YS5kYXRhLmFwcGVuZCgiSkhuU2ZZamNfWkt5cC0iLCAiY0VTdm9UZURNTHN0bDBOIik7CmRhdGEuZGF0YS5hcHBlbmQoImdmc0JDbGMtVXhEU0siLCAiUGxTNWVaUm5MWFFXT1ZzIik7CmRhdGEuZGF0YS5hcHBlbmQoImhkT1dDZSIsICI3NVdbY0pGbkEiKTsKZGF0YS5kYXRhLmFwcGVuZCgiWFFBQ2RtYyIsICJdRnk0MjhCTCIpOwogICAgICAgICAgICAgICAgICAgIH0NCiAgICAgICAgICAgICAgICAgICAgZWxzZSB7DQogICAgICAgICAgICAgICAgICAgICAgICBkYXRhLmRhdGEgPSAgZGF0YS5kYXRhICsgJyZKSG5TZllqY19aS3lwLT1jRVN2b1RlRE1Mc3RsME4mZ2ZzQkNsYy1VeERTSz1QbFM1ZVpSbkxYUVdPVnMmaGRPV0NlPTc1V1tjSkZuQSZYUUFDZG1jPV1GeTQyOEJMJzsNCiAgICAgICAgICAgICAgICAgICAgfQ0KICAgICAgICAgICAgICAgIH0NCiAgICAgICAgICAgIH0pOw0KDQogICAgICAgIH0pOw0KCQ=="></script> </body></html>";s:4:"text";s:15316:"I found two methods to solve this problem. I use his class H2OProbWrapper to calculate the SHAP values. There are two good papers to tell you a lot about the Shapley Value Regression: Lipovetsky, S. (2006). The difference in the prediction from the black box is computed: \[\phi_j^{m}=\hat{f}(x^m_{+j})-\hat{f}(x^m_{-j})\]. Further, when Pr is null, its R2 is zero. Then for each predictor, the average improvement will be calculated that is created when adding that variable to a model. For deep learning, check Explaining Deep Learning in a Regression-Friendly Way. We start with an empty team, add the feature value that would contribute the most to the prediction and iterate until all feature values are added. Instead of comparing a prediction to the average prediction of the entire dataset, you could compare it to a subset or even to a single data point. Why refined oil is cheaper than cold press oil? Asking for help, clarification, or responding to other answers. He also rips off an arm to use as a sword. Browse other questions tagged, Where developers & technologists share private knowledge with coworkers, Reach developers & technologists worldwide, Ah  i see. Another solution comes from cooperative game theory: Since we usually do not have similar weights in other model types, we need a different solution. Could a subterranean river or aquifer generate enough continuous momentum to power a waterwheel for the purpose of producing electricity? We will take a practical hands-on approach, using the shap Python package to explain progressively more complex models. The Shapley value is a solution for computing feature contributions for single predictions for any machine learning model. Lets understand what&#x27;s fair distribution using Shapley value. Should I re-do this cinched PEX connection? The value of the j-th feature contributed \(\phi_j\) to the prediction of this particular instance compared to the average prediction for the dataset. It is important to remember what the units are of the model you are explaining, and that explaining different model outputs can lead to very different views of the models behavior. It computes the variable importance values based on the Shapley values from game theory, and the coefficients from a local linear regression. Thus, Yi  will have only k-1 variables. Why does Acts not mention the deaths of Peter and Paul? The SVM uses kernel functions to transform into a higher-dimensional space for the separation. This estimate depends on the values of the randomly drawn apartment that served as a donor for the cat and floor feature values. I am trying to do some bad case analysis on my product categorization model using SHAP. The apartment has an area of 50 m2, is located on the 2nd floor, has a park nearby and cats are banned: FIGURE 9.17: The predicted price for a 50 \(m^2\) 2nd floor apartment with a nearby park and cat ban is 300,000. Which ability is most related to insanity: Wisdom, Charisma, Constitution, or Intelligence? Not the answer you're looking for? The feature importance for linear models in the presence of multicollinearity is known as the Shapley regression value or Shapley value13. Consider this question: Is your sophisticated machine-learning model easy to understand? That means your model can be understood by input variables that make business sense. To understand a features importance in a model it is necessary to understand both how changing that feature impacts the models output, and also the distribution of that features values.  What should I follow, if two altimeters show different altitudes? Site design / logo  2023 Stack Exchange Inc; user contributions licensed under CC BY-SA.  The SHAP module includes another variable that alcohol interacts most with.  However, binary variables are arguable numeric, and I&#x27;d be shocked if you got a meaningfully different result from using a standard Shapley regression . 1. Shapley Value Regression and the Resolution of Multicollinearity. Why the obscure but specific description of Jane Doe II in the original complaint for Westenbroek v. Kappa Kappa Gamma Fraternity?  The feature values of a data instance act as players in a coalition. Asking for help, clarification, or responding to other answers. The answer is simple for linear regression models. A variant of Relative Importance Analysis has been developed for binary dependent variables. Not the answer you're looking for? While the lack of interpretability power of deep learning models limits their usage, the adoption of SHapley Additive exPlanation (SHAP) values was an improvement. The Shapley value is a solution concept in cooperative game theory.It was named in honor of Lloyd Shapley, who introduced it in 1951 and won the Nobel Memorial Prize in Economic Sciences for it in 2012. Today, machine learning is used, for example, to detect fraudulent financial transactions, recommend movies and classify images. The scheme of Shapley value regression is simple. All in all, the following coalitions are possible: For each of these coalitions we compute the predicted apartment price with and without the feature value cat-banned and take the difference to get the marginal contribution. Shapley, Lloyd S. A value for n-person games. Contributions to the Theory of Games 2.28 (1953): 307-317., trumbelj, Erik, and Igor Kononenko. The resulting values are no longer the Shapley values to our game, since they violate the symmetry axiom, as found out by Sundararajan et al. Once it is obtained for each r, its arithmetic mean is computed. To mitigate the problem, you are advised to build several KNN models with different numbers of neighbors, then get the averages.  This demonstrates how SHAP can be applied to complex model types with highly structured inputs. I suggest looking at KernelExplainer which as described by the creators here is. "Signpost" puzzle from Tatham's collection, Proving that Every Quadratic Form With Only Cross Product Terms is Indefinite, Folder's list view has different sized fonts in different folders. For RNN/LSTM/GRU, check A Technical Guide on RNN/LSTM/GRU for Stock Price Prediction. Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems 41.3 (2014): 647-665., Lundberg, Scott M., and Su-In Lee. The interpretation of the Shapley value is: By clicking Post Your Answer, you agree to our terms of service, privacy policy and cookie policy. By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy. But we would use those to compute the features Shapley value. Each \(x_j\) is a feature value, with j = 1,,p.  Episode about a group who book passage on a space ship controlled by an AI, who turns out to be a human who can't leave his ship? The Shapley value fairly distributes the difference of the instance&#x27;s prediction and the datasets average prediction among the features. Now, Pr  can be drawn in L=kCr ways. It is not sufficient to access the prediction function because you need the data to replace parts of the instance of interest with values from randomly drawn instances of the data. It only takes a minute to sign up. It is available here. Follow More from Medium Aditya Bhattacharya in Towards Data Science Essential Explainable AI Python frameworks that you should know about Ani Madurkar in Towards Data Science The SHAP values do not identify causality, which is better identified by experimental design or similar approaches. It is important to point out that the SHAP values do not provide causality. The prediction of the H2O Random Forest for this observation is 6.07. Additivity This means that the magnitude of a coefficient is not necessarily a good measure of a features importance in a linear model. The second, third and fourth rows show different coalitions with increasing coalition size, separated by |. How much has each feature value contributed to the prediction compared to the average prediction? Explaining a generalized additive regression model, Explaining a non-additive boosted tree model, Explaining a linear logistic regression model, Explaining a non-additive boosted tree logistic regression model. The Shapley value is the average marginal contribution of a feature value across all possible coalitions [ 1 ]. Here is what a linear model prediction looks like for one data instance: \[\hat{f}(x)=\beta_0+\beta_{1}x_{1}+\ldots+\beta_{p}x_{p}\]. How to set up a regression for Adjusted Plus Minus with no offense and defense? I can see how this works for regression. Lundberg et al. You have trained a machine learning model to predict apartment prices. Relative Importance Analysis gives essentially the same results as Shapley (but not ask Kruskal). This repository implements a regression-based approach to estimating Shapley values. The exponential growth in the time needed to run Shapley regression places a constraint on the number of predictor variables that can be included in a model. Moreover, a SHAP value greater than zero leads to an increase in probability, a value less than zero leads to a decrease in probability. See my post Dimension Reduction Techniques with Python for further explanation. Image of minimal degree representation of quasisimple group unique up to conjugacy, the Allied commanders were appalled to learn that 300 glider troops had drowned at sea. It is faster than the Shapley value method, and for models without interactions, the results are the same. The documentation for Shap is mostly solid and has some decent examples. This dataset consists of 20,640 blocks of houses across California in 1990, where our goal is to predict the natural log of the median home price from 8 different Instead of fitting a straight line or hyperplane, the logistic regression model uses the logistic function to squeeze the output of a linear equation between 0 and 1. Making statements based on opinion; back them up with references or personal experience. The procedure has to be repeated for each of the features to get all Shapley values. Using the kernalSHAP, first you need to find the shaply value and then find the single instance, as following below; as the original text  is "good article interested natural alternatives treat ADHD" and Label is "1". To explain the predictions of the GBDTs, we calculated Shapley additive explanations values. Are these quarters notes or just eighth notes? In a linear model it is easy to calculate the individual effects. For more than a few features, the exact solution to this problem becomes problematic as the number of possible coalitions exponentially increases as more features are added. With a predicted 2409 rental bikes, this day is -2108 below the average prediction of 4518. An intuitive way to understand the Shapley value is the following illustration: LIME might be the better choice for explanations lay-persons have to deal with. Thats exactly what the KernelExplainer, a model-agnostic method, is designed to do. The most common way of understanding a linear model is to examine the coefficients learned for each feature.  If you want to get deeper into the Machine Learning algorithms, you can check my post My Lecture Notes on Random Forest, Gradient Boosting, Regularization, and H2O.ai. These consist of models like Linear regression, Logistic regression ,Decision tree, Nave Bayes and k-nearest neighbors etc. The forces driving the prediction to the right are alcohol, density, residual sugar, and total sulfur dioxide; to the left are fixed acidity and sulphates. Shapley value computes the regression using all possible combinations of predictors and computes the R 2 for each model. \(val_x(S)\) is the prediction for feature values in set S that are marginalized over features that are not included in set S: \[val_{x}(S)=\int\hat{f}(x_{1},\ldots,x_{p})d\mathbb{P}_{x\notin{}S}-E_X(\hat{f}(X))\].  What's the cheapest way to buy out a sibling's share of our parents house if I have no cash and want to pay less than the appraised value? The interpretation of the Shapley value for feature value j is: By clicking Post Your Answer, you agree to our terms of service, privacy policy and cookie policy. The driving forces identified by the KNN are: free sulfur dioxide, alcohol and residual sugar. It signifies the effect of including that feature on the model prediction. What does ** (double star/asterisk) and * (star/asterisk) do for parameters? Its principal application is to resolve a weakness of linear regression, which is that it is not reliable when predicted variables are moderately to highly correlated. The SHAP builds on ML algorithms. Find centralized, trusted content and collaborate around the technologies you use most. The axioms  efficiency, symmetry, dummy, additivity  give the explanation a reasonable foundation. Where might I find a copy of the 1983 RPG "Other Suns"? Shapley values are a widely used approach from cooperative game theory that come with desirable properties. forms: In the first form we know the values of the features in S because we observe them. Think about this: If you ask me to swallow a black pill without telling me whats in it, I certainly dont want to swallow it. Site design / logo  2023 Stack Exchange Inc; user contributions licensed under CC BY-SA. The prediction for this observation is 5.00 which is similar to that of GBM. This hyper-parameter, together with n_iter_no_change=5 will help the model to stop earlier if the validation result is not improving after 5 times. xcolor: How to get the complementary color, Can corresponding author withdraw a paper after it has accepted without permission/acceptance of first author. We . First, lets load the same data that was used in Explain Your Model with the SHAP Values. All possible coalitions (sets) of feature values have to be evaluated with and without the j-th feature to calculate the exact Shapley value. Very simply, the . Such additional scrutiny makes it practical to see how changes in the model impact results. Thanks for contributing an answer to Stack Overflow! I was going to flag this as plagiarized, then realized you're actually the original author. Feature relevance quantification in explainable AI: A causal problem. International Conference on Artificial Intelligence and Statistics. This means it cannot be used to make statements about changes in prediction for changes in the input, such as: To each cooperative game it assigns a unique distribution (among the players) of a total surplus generated by the coalition of all players.  The players are the feature values of the instance that collaborate to receive the gain (= predict a certain value). The notebooks produced by AutoML regression and classification runs include code to calculate Shapley values. If we sum all the feature contributions for one instance, the result is the following: \[\begin{align*}\sum_{j=1}^{p}\phi_j(\hat{f})=&\sum_{j=1}^p(\beta_{j}x_j-E(\beta_{j}X_{j}))\\=&(\beta_0+\sum_{j=1}^p\beta_{j}x_j)-(\beta_0+\sum_{j=1}^{p}E(\beta_{j}X_{j}))\\=&\hat{f}(x)-E(\hat{f}(X))\end{align*}\].  This tutorial is designed to help build a solid understanding of how to compute and interpet Shapley-based explanations of machine learning models. ";s:7:"keyword";s:34:"shapley values logistic regression";s:5:"links";s:326:"<a href="https://g-step.co.uk/nra2cea0/exotic-animals-for-sale-in-west-virginia">Exotic Animals For Sale In West Virginia</a>,
<a href="https://g-step.co.uk/nra2cea0/rv-lots-for-sale-in-southern-california">Rv Lots For Sale In Southern California</a>,
<a href="https://g-step.co.uk/nra2cea0/sitemap_s.html">Articles S</a><br>
";s:7:"expired";i:-1;}